Thank you for sending your enquiry! One of our team members will contact you shortly.
Thank you for sending your booking! One of our team members will contact you shortly.
Course Outline
Introduction to Multimodal Models
- Overview of multimodal machine learning
- Applications of multimodal models
- Challenges in handling multiple data types
Architectures for Multimodal Models
- Exploring models like CLIP, Flamingo, and BLIP
- Understanding cross-modal attention mechanisms
- Architectural considerations for scalability and efficiency
Preparing Multimodal Datasets
- Data collection and annotation techniques
- Preprocessing text, images, and video inputs
- Balancing datasets for multimodal tasks
Fine-Tuning Techniques for Multimodal Models
- Setting up training pipelines for multimodal models
- Managing memory and computational constraints
- Handling alignment between modalities
Applications of Fine-Tuned Multimodal Models
- Visual question answering
- Image and video captioning
- Content generation using multimodal inputs
Performance Optimization and Evaluation
- Evaluation metrics for multimodal tasks
- Optimizing latency and throughput for production
- Ensuring robustness and consistency across modalities
Deploying Multimodal Models
- Packaging models for deployment
- Scalable inference on cloud platforms
- Real-time applications and integrations
Case Studies and Hands-On Labs
- Fine-tuning CLIP for content-based image retrieval
- Training a multimodal chatbot with text and video
- Implementing cross-modal retrieval systems
Summary and Next Steps
Requirements
- Proficiency in Python programming
- Understanding of deep learning concepts
- Experience with fine-tuning pre-trained models
Audience
- AI researchers
- Data scientists
- Machine learning practitioners
28 Hours